
Multi-locus genome-wide association
studies
Chloé-Agathe Azencott

CBIO, Mines ParisTech – Institut Curie – INSERM U900, Paris (France)

October 21, 2016 – Krupp Symposium
http://cazencott.info chloe-agathe.azencott@mines-paristech.fr @cazencott

http://cazencott.info
chloe-agathe.azencott@mines-paristech.fr
http://twitter.com/cazencott








Multi-locus genome-wide association studies

Chloé-Agathe Azencott

Machine Learning & Computational Biology Research Group
Max Planck Institute for Intelligent Systems &

Max Planck Institute for Developmental Biology
Tübingen (Germany)

March 2011 –Ṅovember 2013
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Genome-Wide Association Studies

Which regions of the genome explain the phenotype?

Feature selection in high dimension.
I Technological advances:
p = 105 – 107 Single Nucleotide Polymorphisms (SNPs)
n = 102 – 104 samples.

I Methodological advances? 1



Missing heritability

GWAS fail to explain most of the inheritable variability of
complex traits.

Many possible reasons:
– non-genetic / non-SNP factors
– rare SNPs
– weak effect sizes
– few samples in high dimension
– joint effets of multiple SNPs.
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Multi-locus GWAS

I Epistasis: known synergetic effects between genes
I Enhance/suppress cancer mutations [Ashworth et al. 2011]
Loss of VHL (tumor supressor) causes cellular senescense, unless Retinoblastoma
(another tumor supressor) is also inactivated.

I Working memory related brain activation [Tan et al. 2007]
GRM3 adverse effect on prefrontal engagement only in presence of one variant of
COMT.

→ Map pairs of SNPs to the phenotype.
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Search space

1012 – 1014 SNP pairs

Computational burden→ use Graphical Processing Units
IC 1101 (largest known galaxy) – Hubble Space Telescope.
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EPIBLASTER

I Difference in correlation between SNPs:

∆(SNP1,SNP2) =

 1

ncases

∑
i case

SNP(i)1 SNP
(i)
2 −
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nctrls
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i ctrl

SNP(i)1 SNP
(i)
2

2

I Limited to qualitative phenotypes.

T. Kam-Thong, D. Czamara, et al. (2011). EPIBLASTER – Fast exhaustive two-locus
epistasis detection strategy using graphical processing units. European Journal of
Human Genetics, 19 (4), 465–471 doi:10.1038/ejhg.2010.196

http://www.psych.mpg.de/2046236/EPIBLASTER.zip
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EpiGPUHSIC
I Extend to quantitative phenotypes using the Hilbert-Schmidt
Independence Criterion

∆(SNP1,SNP2) =

(∑
i

SNP(i)
1 SNP

(i)
2 Phenotype

(i)

)2

I Does not account for main effects.

T. Kam-Thong, B. Pütz, B. Müller-Myhsok, and K. M. Borgwardt. (2011) Epistasis detection
on quantitative phenotypes by exhaustive enumeration using GPUs. Bioinformatics, 27
(13), i214–221 doi:10.1093/bioinformatics/btr218

http://www.psych.mpg.de/2046246/EpiGPUHSIC.zip
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GLIDE

GPU-based linear regression for the detection of epistasis

Phenotype = α SNP1 + β SNP2 + γ SNP1 × SNP2 + δ

I Is γ signficantly different from 0?→ t-test.
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Runtime Performance
Synthetic data: 1 000 subjects, 5 000 SNPs
NVIDIA GTX 580 (∼ $450 in 2011)

8



Hippocampus Volume Epistasis Detection

I GWAS study: 567 genotyped subjects, about 106 SNPs
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Hippocampus Volume Epistasis Detection

I Single-locus GWAS
– 20 SNPs with significant main effects
– 14 associated with hippocampal morphology and brain maturation
→ explain 18% of the variance

I Two-locus GWAS
– Runtime≈ 3 days on a single GPU
– 20 pairs with lowest p-values (2.6 10-13 – 2.6 -11)

– No significant main effects
→ 8 independent pairs, explain 40% of the variance

I Together explain 50% of the variance.
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GLIDE

I Both phenotype and genotype can be continuous

I Main effects are accounted for.

T. Kam-Thong, C.-A. Azencott, L. Cayton, B. Pütz, A. Altmann, N. Karbalai, P. G. Sämann, B.
Schölkopf, B. Müller-Myhsok, and K. M. Borgwardt. (2012) GLIDE: GPU-Based Linear
Regression for Detection of Epistasis. Human Heredity, 73 (4), 220–236 doi:
10.1159/000341885

https://github.com/BorgwardtLab/GLIDE

https://github.com/chagaz/glide-scripts
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Missing heritability

GWAS fail to explain most of the inheritable variability of
complex traits.

Many possible reasons:
– non-genetic / non-SNP factors
– rare SNPs
– weak effect sizes
– few samples in high dimension (p� n)
– joint effets of multiple SNPs.
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Integrating prior knowledge

Use additional data and prior knowledge to constrain the
feature selection procedure.
– Consistant with previously established knowledge
– More easily interpretable
– Statistical power.

Prior knowledge can be represented as structure:
– Linear structure of DNA
– Groups: e.g. pathways
– Networks (molecular, 3D structure).
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Network-guided multi-locus GWAS

Goal: Find a set of explanatory SNPs compatible with a given
network structure.
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Network-guided GWAS
I Additive test of association SKAT [Wu et al. 2011]

R(S) =
∑
i∈S

ci

I Laplacian regularization

Ω : S 7→
∑
i∈S

∑
j /∈S

Wij + α|S|

I Regularized maximization ofR

arg max
S⊆V

∑
i∈S

ci︸ ︷︷ ︸
association

− η |S|︸︷︷︸
sparsity

−λ
∑
i∈S

∑
j /∈S

Wij︸ ︷︷ ︸
connectivity
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Minimum cut reformulation
The graph-regularized maximization of scoreQ(∗) is equivalent to a s/t-min-cut for a
graph with adjacency matrixA and two additional nodes s and t, whereAij = λWij

for 1 ≤ i, j ≤ p and the weights of the edges adjacent to nodes s and t are defined as

Asi =

{
ci − η if ci > η

0 otherwise and Ait =

{
η − ci if ci < η

0 otherwise .

SConES: Selecting Connected Explanatory SNPs.
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Comparison partners
I Univariate linear regression yk = α0 + βGi

k

I Lasso
arg min
β∈Rp

1

2
||y −Gβ||22︸ ︷︷ ︸
loss

+ η ||β||1︸ ︷︷ ︸
sparsity

I Feature selection with sparsity and connectivity constraints
arg min
β∈Rp

L(y,Gβ)︸ ︷︷ ︸
loss

+ η ||β||1︸ ︷︷ ︸
sparsity

+ λΩ(β)︸ ︷︷ ︸
connectivity

– ncLasso: network connected Lasso [Li and Li, Bioinformatics 2008]
– Overlapping group Lasso [Jacob et al., ICML 2009]
– groupLasso: E.g. SNPs near the same gene grouped together
– graphLasso: 1 edge = 1 group.
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Runtime
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Experiments: Performance on simulated data

I Arabidopsis thaliana genotypes
n=500 samples, p=1 000 SNPs
TAIR Protein-Protein Interaction data∼ 50.106 edges

I Higher power and lower FDR than comparison partners

except for groupLasso when groups = causal structure

I Fairly robust to missing edges
I Fails if network is random.
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Arabidopsis thaliana flowering time

17 flowering time phenotypes
[Atwell et al., Nature, 2010]

p ∼ 170 000 SNPs
(after MAF filtering)
n ∼ 150 samples

165 candidate genes
[Segura et al., Nat Genet 2012]

Correction for population structure: regress out PCs.

Image credits: Dymek & Smith 10.1242/jcs.096941
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Arabidopsis thaliana flowering time
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I SConES selects about as many SNPs as other network-guided
approaches but detects more candidates.
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Arabidopsis thaliana flowering time

Predictivity of selected SNPs
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SConES: Selecting Connected Explanatory SNPs
I selects connected, explanatory SNPs;

I incorporates large networks into GWAS;

I is efficient, effective and robust.

C.-A. Azencott, D. Grimm, M. Sugiyama, Y. Kawahara and K. Borgwardt (2013) Efficient
network-guided multi-locus association mapping with graph cuts, Bioinformatics 29
(13), i171–i179 doi:10.1093/bioinformatics/btt238
https://github.com/chagaz/scones

https://github.com/chagaz/sfan

https://github.com/dominikgrimm/easyGWASCore
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Multi-trait GWAS

Increase sample size by jointly performing GWAS for multiple
related phenotypes
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Toxicogenetics / Pharmacogenomics

Tasks (phenotypes) = chemical compounds

F. Eduati, L. Mangravite, et al. (2015) Prediction of human population responses to toxic
compounds by a collaborative competition. Nature Biotechnology, 33 (9), 933–940 doi:
10.1038/nbt.3299
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Multi-SConES
T related phenotypes.

I Goal: obtain similar sets of features on related tasks.

arg max
S1,...,ST⊆V

T∑
t=1

∑
i∈S

ci − η |S| − λ
∑
i∈S

∑
j /∈S

Wij − µ |St−1 ∆ St|︸ ︷︷ ︸
task sharing


S ∆ S ′ = (S ∪ S ′) \ (S ∩ S ′) (symmetric difference)

I Can be reduced to single-task by building a meta-network.
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Multi-SConES: Multiple related tasks
Simulations: retrieving causal features
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M. Sugiyama, C.-A. Azencott, D. Grimm, Y. Kawahara and K. Borgwardt (2014) Multi-task
feature selection on multiple networks via maximum flows, SIAM ICDM, 199–207
doi:10.1137/1.9781611973440.23
https://github.com/mahito-sugiyama/Multi-SConES

https://github.com/chagaz/sfan
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SNP pathogenicity
I SNP deleteriousness prediction tools→ prior knowledge?
I Tools are unreliable due to circularity issues in their
evaluation:
– Overlapping training and evaluation sets
– Gene-level confounding

D. Grimm, C.-A. Azencott, et al. (2015) The evaluation of tools used to predict the impact
of missense variants is hindered by two types of circularity. Human Mutation, 36 (5),
513–523 doi:10.1002/humu.22768
https://github.com/dominikgrimm/pathogenicity
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Limitations of current approaches

I Robustness/stability
Recovering the same SNPs when the data changes slightly.

I Complex epistasis patterns
– Limited to additive or quadrative effects
– Work on random forests + importance score [Yoshida, Stephan].

I Statistical significance
– Computing p-values
– Correcting for multiple hypotheses.
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https://github.com/BorgwardtLab/

source: http://www.flickr.com/photos/wwworks/

MLCB Tübingen: Fabian Aicheler, Karsten Borgwardt, Aasa Feragen, Udo Gieraths,
Dominik Grimm, Theofanis Karaletsos, Niklas Kasenburg, Limin Li, Chrisoph Lippert,
Felipe Llinares-López, Barbara Rakitsch, Damian Roqueiro, Nino Shervashidze,
Carl-Johann Simon-Gabriel, Oliver Stegle, Mahito Sugiyama, Valeri Velkov.
MPI for Intelligent Systems: Lawrence Cayton, Bernhard Schölkopf.
MPI for Developmental Biology: Detlef Weigel.
MPI for Psychiatry: André Altmann, Tony Kam-Thong, Nazanin Karbalai,
Marcus Ising, Bertram Müller-Myhsok, Benno Pütz.
Broad Institute: Verneri Anttila, Mark Daly,
Laramie Duncan, Daniel MacArthur,
Kathrin Samocha, Jordan Smoller.
Osaka University: Yoshinobu Kawahara.
University of Toronto: Recep Colak.

30

https://github.com/BorgwardtLab/
http://www.flickr.com/photos/wwworks/

